Validation for IBIS Models

Asian IBIS Summit Beijing China September 11, 2007

Lance Wang <u>Iwang@iometh.com</u> Xinjun Zhang <u>xjzhang@iometh.com</u> Benny Yan <u>zyan@iometh.com</u> IO Methodology Inc.

Agenda

- IBIS Quality Issue
- One test result
- How to improve current IBIS model qualities?

IBIS Quality Issue

One test result

How to improve current IBIS model qualities?

IBIS (I/O Buffer Information Specification)

- Public Standard
 - ANSI
 - EIA-656-A
- Well known behavioral buffer model specification
- There are about 300+ companies provide IBIS models, thousands of companies use IBIS for their designs

IBIS faces quality issues

- IBIS model quality is poor in general
 - "70% of IBIS models on the web are JUNK" quoted a few years ago
 - "More than 50% of IBIS models are not accurate" quoted recently
 - "the IBIS simulation results are different using different simulators" quoted a long time ago. But it is still TRUE
- How to solve these issues?

The things we are doing

- IBIS Committee efforts
 - Quality Sub-committee
 - Model Review Sub-committee
 - Educational seminars done by companies and individuals
- But, the MOST Important thing for your design and analysis is:

Validate the IBIS models before your design and analysis

IBIS Quality Issue

One test result

How to improve current IBIS model qualities?

Test Implementation

For validating C_comp and Ramp data with VT curves

≻Output buffer with 50 Ohm resistor to GND

- ➤0.1ps rising and falling edge for stimulus
- Probe the output pad of driver
- ➤Keep C_comp constant, sweep Ramp data
- ≻Keep Ramp data constant, sweep C_comp
- ➢Simulate in two different IBIS Simulators

Correlation spice and IBIS model with 4 VT

The Max DAI between two simulators is 0.525%

Showed perfect matching

IBIS Simulator1 /wo VT (Rising)

Keep C_comp constant, sweep Ramp data, the maximal DAI is 7.094%
 Keep Ramp data constant, sweep C_comp, the maximal DAI is 0.127%
 At rising edge, Ramp data is the main factor in Simulator1

IBIS Simulator1 /wo VT (Falling)

Keep C_comp constant, sweep Ramp data, the maximal DAI is 1.994%
 Keep Ramp data constant, sweep C_comp, the maximal DAI is 1.938%
 At falling edge, Ramp and C_comp play almost the same role in Simulator1

IBIS Simulator2 /wo VT (Rising)

Keep Ramp constant, sweep C_comp, the maximal DAI is 1.19%
Keep C_comp constant, sweep Ramp, there is NO difference
At rising edge, C_comp is the main factor in Simulator2

IBIS Simulator2 /wo VT (Falling)

Keep Ramp constant, sweep C_comp, the maximal DAI is 1.057%
Keep C_comp constant, sweep Ramp, there is NO difference
At falling edge, C_comp is the main factor in Simulator2

The effect is reversed for the previous simulations in Simulator1 while Simulator2 has the same effect as the previous simulations.

Test Conclusions

- Simulators are giving the different results due to different implementations for IBIS simulations
- Another words, even the same IBIS model, you may get different results when you used the different simulators

- IBIS Quality Issue
- One test result

How to improve current IBIS model qualities?

IBIS Validation Process

Steps

- Develop a proper validation method
- Contact vendor(s) to get the Golden source (results)
- Run the tests using IBIS simulators
- Compare the results
- You are lucky if the results are aligned with each others
- Or, contact vendor(s) if the results are not correlated both simulator and model vendors are needed
- You might have to repeat many steps to get it done
- Concerns? Problems?

Concerns and Problems in IBIS Validation Process

- Too long
 - Average is more than 8 business days
- Not accurate enough
 - Lack of the knowledge for the device technologies, IBIS and EDA tools
- This is a Model Librarian job
 - Not all SI engineers have enough model and tool knowledge for this process
 - Not every company has the model librarian

Meth[™]

IBIS Certification Program (IBISCP)

A Vendor Neutral Program

- Motivations
 - Provide a solution for IBIS users to have GOOD models for their high-speed designs
 - Provide a solution for IBIS vendors to have GOOD models for their customers
- Target
 - To have IBIS as a primary industry standard on behavioral IO modeling for High-Speed Signal Integrity analysis
 - To allow designers make faster, cheaper and more reliable electronic products

IBISCP:

Purposes and Goals

- Provide a professional IBIS model validation results to IBIS users and vendors
- Provide a multi-simulator validation results to IBIS users, IBIS vendors and EDA vendors
- Provide a on-going validation process based on requests from IBIS users and IBIS vendors
- Provide statistical reports about IBIS feature usages, feedbacks and enhancement requests to IBIS Open Forum
- Provide IBIS quality reports to IBIS Open Forum, IBIS Quality Sub-committee and IBIS Model Review Sub-committee
- Provide IBIS feature support reports to EDA vendors

IBISCP.ORG will be launched in the middle of September, 2007

Fully Customized Internal Tool Development and Maintenance Services <u>www.IOMeth.com</u>

Waveform Differential Index

An technical invention patent hold by IO Methodology Inc. (Shanghai LiKai)

- How to compare the two waveforms? (Eye Inspection? Parameterization?)
 - Example A

Problems Existed

- Significant differences are in a relative small range.
- Example B
 - No significant differences.

Noise Threshold Definition

- Waveform differences curve W0 is
 - W0=|W2-W1|, where t is from [Tstart, Tend]
 - Comparison Window: [Tstart, Tend]
- NT is 0.5mV by default for the voltage waveforms, and 0.1mA by default for the current waveforms.
- Waveforms differences smaller than NT will be ignored.
- For the right figure (Example B), the red curve is NT curve.
- Significant region includes several small regions.

Differential Index (DI)

DI includes,

DA (Differential Average) and DAI (Differential Average Index)

DA= 1.666122mV; DAI=0.13%.

DA=165.6156mV; DAI=7.47%.

Meth[™]

DAI, DPI & Waveform Differences

- Region A: Perfect Matching
- Region B: Acceptable Matching
- Region C: Two waveforms match in most of the region, there are one or more points which the differences are significant. Glitches or pulse noise are appeared in one of the waveforms.
- Region D: Unmatched.

Timing DI

- Timing DI includes,
 - TDP (Timing Differential Peak), TDA (Timing Differential Average) and TDL (Timing Differential Length)

- Use to get the timing differences between two waveforms.
- TDP=0.254ns
- TDA=0.249ns
- TDL=1.3V

